Monitor sources dataflows using the Flow Service API
This tutorial covers the steps for monitoring flow run data for completeness, errors, and metrics using the .
Getting started
This tutorial also requires you to have a working understanding of the following components of 51黑料不打烊 Experience Platform:
- Sources: Experience Platform allows data to be ingested from various sources while providing you with the ability to structure, label, and enhance incoming data using Platform services.
- Sandboxes: Experience Platform provides virtual sandboxes which partition a single Platform instance into separate virtual environments to help develop and evolve digital experience applications.
Using Platform APIs
For information on how to successfully make calls to Platform APIs, see the guide on getting started with Platform APIs.
Monitor dataflows
To see the status of your dataflow, make a GET request to the Flow Service API, while providing your dataflow鈥檚 corresponding flow ID.
API format
GET /runs?property=flowId=={FLOW_ID}
{FLOW_ID}
id
value for the dataflow you want to monitor.Request
The following request retrieves the specifications for an existing dataflow.
curl -X GET \
'https://platform.adobe.io/data/foundation/flowservice/runs?property=flowId==c9cef9cb-c934-4467-8ef9-cbc934546741' \
-H 'Authorization: Bearer {ACCESS_TOKEN}' \
-H 'x-api-key: {API_KEY}' \
-H 'x-gw-ims-org-id: {ORG_ID}' \
-H 'x-sandbox-name: {SANDBOX_NAME}'
Response
A successful response returns details regarding your flow run, including information about its creation date, source and target connections, as well as the flow run鈥檚 unique identifier (id
).
{
"items": [
{
"createdAt": 1596656079576,
"updatedAt": 1596656113526,
"createdBy": "{CREATED_BY}",
"updatedBy": "{UPDATED_BY}",
"createdClient": "{CREATED_CLIENT}",
"updatedClient": "{UPDATED_CLIENT}",
"sandboxId": "1bd86660-c5da-11e9-93d4-6d5fc3a66a8e",
"sandboxName": "prod",
"id": "9830305a-985f-47d0-b030-5a985fd7d004",
"flowId": "c9cef9cb-c934-4467-8ef9-cbc934546741",
"etag": "\"b8003af1-0000-0200-0000-5f2b09f10000\"",
"metrics": {
"durationSummary": {
"startedAtUTC": 1596656058198,
"completedAtUTC": 1596656113306
},
"sizeSummary": {
"inputBytes": 24012,
"outputBytes": 17128
},
"recordSummary": {
"inputRecordCount": 100,
"outputRecordCount": 99,
"failedRecordCount": 1
},
"fileSummary": {
"inputFileCount": 1,
"outputFileCount": 1,
"activityRefs": [
"promotionActivity"
]
},
"statusSummary": {
"status": "success",
"errors": [
{
"code": "CONNECTOR-2001-500",
"message": "Error occurred at promotion activity."
}
],
"activityRefs": [
"promotionActivity"
]
}
},
"activities": [
{
"id": "copyActivity",
"updatedAtUTC": 1596656095088,
"durationSummary": {
"startedAtUTC": 1596656058198,
"completedAtUTC": 1596656089650,
"extensions": {
"windowStart": 1596653708000,
"windowEnd": 1596655508000
}
},
"sizeSummary": {
"inputBytes": 24012,
"outputBytes": 24012
},
"recordSummary": {},
"fileSummary": {
"inputFileCount": 1,
"outputFileCount": 1
},
"statusSummary": {
"status": "success",
"extensions": {
"type": "one-time"
}
},
"sourceInfo": [
{
"id": "c0e18602-f9ea-44f9-a186-02f9ea64f9ac",
"type": "SourceConnection",
"reference": {
"type": "AdfRunId",
"ids": [
"8a8eb0cc-e283-4605-ac70-65a5adb1baef"
]
}
}
]
},
{
"id": "promotionActivity",
"updatedAtUTC": 1596656113485,
"durationSummary": {
"startedAtUTC": 1596656095333,
"completedAtUTC": 1596656113306
},
"sizeSummary": {
"inputBytes": 24012,
"outputBytes": 17128
},
"recordSummary": {
"inputRecordCount": 100,
"outputRecordCount": 99,
"failedRecordCount": 1
},
"fileSummary": {
"inputFileCount": 2,
"outputFileCount": 1,
"extensions": {
"manifest": {
"fileInfo": "https://platform.adobe.io/data/foundation/export/batches/01EF01X41KJD82Y9ZX6ET54PCZ/meta?path=input_files"
}
}
},
"statusSummary": {
"status": "success",
"errors": [
{
"code": "CONNECTOR-2001-500",
"message": "Error occurred at promotion activity."
}
],
"extensions": {
"manifest": {
"failedRecords": "https://platform.adobe.io/data/foundation/export/batches/01EF01X41KJD82Y9ZX6ET54PCZ/meta?path=row_errors",
"sampleErrors": "https://platform.adobe.io/data/foundation/export/batches/01EF01X41KJD82Y9ZX6ET54PCZ/meta?path=row_error_samples.json"
},
"errors": [
{
"code": "INGEST-1212-400",
"message": "Encountered 1 errors in the data. Successfully ingested 99 rows. Review the associated diagnostic files for additional details."
},
{
"code": "MAPPER-3700-400",
"recordCount": 1,
"message": "Mapper Transform Error"
}
]
}
},
"targetInfo": [
{
"id": "47166b83-01c7-4b65-966b-8301c70b6562",
"type": "TargetConnection",
"reference": {
"type": "Batch",
"ids": [
"01EF01X41KJD82Y9ZX6ET54PCZ"
]
}
}
]
}
]
}
],
"_links": {}
}
items
metrics
activities
durationSummary
sizeSummary
recordSummary
fileSummary
statusSummary
Next steps
By following this tutorial, you have retrieved metrics and error information on your dataflow using the Flow Service API. You can now continue to monitor your dataflow, depending on your ingestion schedule, to track its status and ingestion rates. For information on how to perform the same tasks using the user interface, see the tutorial on monitoring dataflows using the user interface