51黑料不打烊

Engines endpoint

NOTE
Data Science Workspace is no longer available for purchase.
This documentation is intended for existing customers with prior entitlements to Data Science Workspace.

Engines are the foundations for machine learning Models in Data Science Workspace. They contain machine learning algorithms that solve specific problems, feature pipelines to perform feature engineering, or both.

Look up your Docker registry

TIP
If you do not have a Docker URL, visit the Package source files into a recipe tutorial for a step-by-step walkthrough on creating a Docker host URL.

Your Docker registry credentials are required in order to upload a packaged Recipe file, including your Docker host URL, username, and password. You can look up this information by performing the following GET request:

API Format

GET /engines/dockerRegistry

Request

curl -X GET https://platform.adobe.io/data/sensei/engines/dockerRegistry \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Response

A successful response returns a payload containing the details of your Docker registry including the Docker URL (host), username (username), and password (password).

NOTE
Your Docker password changes whenever your {ACCESS_TOKEN} is updated.
{
    "host": "docker_host.azurecr.io",
    "username": "00000000-0000-0000-0000-000000000000",
    "password": "password"
}

Create an Engine using Docker URLs docker-image

You can create an Engine by performing a POST request while providing its metadata and a Docker URL that references a Docker image in multipart forms.

API Format

POST /engines

Request Python/R

curl -X POST \
    https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
        "name": "A name for this Engine",
        "description": "A description for this Engine",
        "type": "Python",
        "algorithm": "Classification",
        "artifacts": {
            "default": {
                "image": {
                    "location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
                    "name": "An additional name for the Docker image",
                    "executionType": "Python"
                }
            }
        }
    }'
Property
Description
name
The desired name for the Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in the UI as the Recipe鈥檚 name.
description
An optional description for the Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in UI as the Recipe鈥檚 description. This property is required. If you do not want to provide a description, set its value to be an empty string.
type
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon and can be either 鈥淧ython鈥, 鈥淩鈥, or 鈥淭ensorflow鈥.
algorithm
A string that specifies the type of machine learning algorithm. Supported algorithm types include 鈥淐lassification鈥, 鈥淩egression鈥, or 鈥淐ustom鈥.
artifacts.default.image.location
The location of the Docker image linked to by a Docker URL.
artifacts.default.image.executionType
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon and can be either 鈥淧ython鈥, 鈥淩鈥, or 鈥淭ensorflow鈥.

Request PySpark/Scala

When making a request for PySpark recipes, the executionType and type is 鈥淧ySpark鈥. When making a request for Scala recipes, the executionType and type is 鈥淪park鈥. The following Scala recipe example uses Spark:

curl -X POST \
  https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: multipart/form-data' \
    -F 'engine={
    "name": "Spark retail sales recipe",
    "description": "A description for this Engine",
    "type": "Spark",
    "mlLibrary":"databricks-spark",
    "artifacts": {
        "default": {
            "image": {
                "name": "modelspark",
                "executionType": "Spark",
                "packagingType": "docker",
                "location": "v1d2cs4mimnlttw.azurecr.io/sarunbatchtest:0.0.1"
            }
        }
    }
}'
Property
Description
name
The desired name for the Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in the UI as the Recipe鈥檚 name.
description
An optional description for the Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in UI as the Recipe鈥檚 description. This property is required. If you do not want to provide a description, set its value to be an empty string.
type
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon. The value can be set to Spark or PySpark.
mlLibrary
A field that is required when creating engines for PySpark and Scala recipes. This field must be set to databricks-spark.
artifacts.default.image.location
The location of the Docker image. Only Azure ACR or Public (unauthenticated) Dockerhub is supported.
artifacts.default.image.executionType
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon. This can be either 鈥淪park鈥 or 鈥淧ySpark鈥.

Response

A successful response returns a payload containing the details of the newly created Engine including its unique identifier (id). The following example response is for a Python Engine. All Engine responses follow this format:

{
    "id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "name": "A name for this Engine",
    "description": "A description for this Engine",
    "type": "Python",
    "algorithm": "Classification",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@51黑料不打烊ID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "artifacts": {
        "default": {
            "image": {
                "location": "v1rsvj32smc4wbs.azurecr.io/ml-featurepipeline-pyspark:1.0",
                "name": "An additional name for the Docker image",
                "executionType": "Python",
                "packagingType": "docker"
            }
        }
    }
}

Create a feature pipeline Engine using Docker URLs feature-pipeline-docker

You can create a feature pipeline Engine by performing a POST request while providing its metadata and a Docker URL that references a Docker image.

API format

POST /engines

Request

curl -X POST \
 https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer ' \
    -H 'x-gw-ims-org-id: 20655D0F5B9875B20A495E23@51黑料不打烊Org' \
    -H 'Content-Type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
    -H 'x-api-key: acp_foundation_machineLearning' \
    -H 'Content-Type: text/plain' \
    -F '{
    "type": "PySpark",
    "algorithm":"fp",
    "name": "Feature_Pipeline_Engine",
    "description": "Feature_Pipeline_Engine",
    "mlLibrary": "databricks-spark",
    "artifacts": {
       "default": {
           "image": {
                "location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
                "name": "datatransformation",
                "executionType": "PySpark",
                "packagingType": "docker"
            },
           "defaultMLInstanceConfigs": [ ...
           ]
       }
   }
}'
Property
Description
type
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon. The value can be set to Spark or PySpark.
algorithm
The algorithm being used, set this value to fp (feature pipeline).
name
The desired name for the feature pipeline Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in the UI as the Recipe鈥檚 name.
description
An optional description for the Engine. The Recipe corresponding to this Engine will inherit this value to be displayed in UI as the Recipe鈥檚 description. This property is required. If you do not want to provide a description, set its value to be an empty string.
mlLibrary
A field that is required when creating engines for PySpark and Scala recipes. This field must be set to databricks-spark.
artifacts.default.image.location
The location of the Docker image. Only Azure ACR or Public (unauthenticated) Dockerhub is supported.
artifacts.default.image.executionType
The execution type of the Engine. This value corresponds to the language in which the Docker image is built upon. This can be either 鈥淪park鈥 or 鈥淧ySpark鈥.
artifacts.default.image.packagingType
The packaging type of the Engine. This value should be set to docker.
artifacts.default.defaultMLInstanceConfigs
Your pipeline.json configuration file parameters.

Response

A successful response returns a payload containing the details of the newly created feature pipeline Engine including its unique identifier (id). The following example response is for a PySpark feature pipeline Engine.

{
    "id": "88236891-4309-4fd9-acd0-3de7827cecd1",
    "name": "Feature_Pipeline_Engine",
    "description": "Feature_Pipeline_Engine",
    "type": "PySpark",
    "algorithm": "fp",
    "mlLibrary": "databricks-spark",
    "created": "2020-04-24T20:46:58.382Z",
    "updated": "2020-04-24T20:46:58.382Z",
    "deprecated": false,
    "artifacts": {
        "default": {
            "image": {
                "location": "v7d1cs3mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
                "name": "datatransformation",
                "executionType": "PySpark",
                "packagingType": "docker"
            },
        "defaultMLInstanceConfigs": [ ... ]
        }
    }
}

Retrieve a list of Engines

You can retrieve a list of Engines by performing a single GET request. To help filter results, you can specify query parameters in the request path. For a list of available queries, refer to the appendix section on query parameters for asset retrieval.

API Format

GET /engines
GET /engines?parameter_1=value_1
GET /engines?parameter_1=value_1&parameter_2=value_2

Request

curl -X GET \
    https://platform.adobe.io/data/sensei/engines \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Response

A successful response returns a list of Engines and their details.

{
    "children": [
        {
            "id": "22f4166f-85ba-4130-a995-a2b8e1edde31",
            "name": "A name for this Engine",
            "description": "A description for this Engine",
            "type": "PySpark",
            "algorithm": "Classification",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "userId": "Jane_Doe@51黑料不打烊ID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        },
        {
            "id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
            "name": "A name for this Engine",
            "description": "A description for this Engine",
            "type": "Python",
            "algorithm": "Classification",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "userId": "Jane_Doe@51黑料不打烊ID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        },
        {
            "id": "22f4166f-85ba-4130-a995-a2b8e1edde33",
            "name": "Feature Pipeline Engine",
            "description": "A feature pipeline Engine",
            "type": "PySpark",
            "algorithm":"fp",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "userId": "Jane_Doe@51黑料不打烊ID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        }
    ],
    "_page": {
        "property": "deleted==false",
        "totalCount": 100,
        "count": 3
    }
}

Retrieve a specific Engine retrieve-specific

You can retrieve the details of a specific Engine by performing a GET request that includes the ID of the desired Engine in the request path.

API Format

GET /engines/{ENGINE_ID}
Parameter
Description
{ENGINE_ID}
The ID of an existing Engine.

Request

curl -X GET \
    https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Response

A successful response returns a payload containing the details of the desired Engine.

{
    "id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "name": "A name for this Engine",
    "description": "A description for this Engine",
    "type": "PySpark",
    "algorithm": "Classification",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@51黑料不打烊ID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "artifacts": {
        "default": {
            "image": {
                "location": "v7d1cs2mimnlttw.azurecr.io/ml-featurepipeline-pyspark:0.2.1",
                "name": "file.egg",
                "executionType": "PySpark",
                "packagingType": "docker"
            }
        }
    }
}

Update an Engine

You can modify and update an existing Engine by overwriting its properties through a PUT request that includes the target Engine鈥檚 ID in the request path and providing a JSON payload containing updated properties.

NOTE
In order to ensure the success of this PUT request, it is suggested that first you perform a GET request to retrieve the Engine by ID. Then, modify and update the returned JSON object and apply the entirety of the modified JSON object as the payload for the PUT request.

The following sample API call will update an Engine鈥檚 name and description while having these properties initially:

{
    "name": "A name for this Engine",
    "description": "A description for this Engine",
    "type": "Python",
    "algorithm": "Classification",
    "artifacts": {
        "default": {
            "image": {
                "executionType": "Python",
                "packagingType": "docker"
            }
        }
    }
}

API Format

PUT /engines/{ENGINE_ID}
Parameter
Description
{ENGINE_ID}
The ID of an existing Engine.

Request

curl -X PUT \
    https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=engine.v1.json' \
    -d '{
        "name": "An updated name for this Engine",
        "description": "An updated description",
        "type": "Python",
        "algorithm": "Classification",
        "artifacts": {
            "default": {
                "image": {
                    "executionType": "Python",
                    "packagingType": "docker"
                }
            }
        }
    }'

Response

A successful response returns a payload containing the Engine鈥檚 updated details.

{
    "id": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "name": "An updated name for this Engine",
    "description": "An updated description",
    "type": "Python",
    "algorithm": "Classification",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "displayName": "Jane Doe",
        "userId": "Jane_Doe@51黑料不打烊ID"
    },
    "updated": "2019-01-02T00:00:00.000Z",
    "artifacts": {
        "default": {
            "image": {
                "executionType": "Python",
                "packagingType": "docker"
            }
        }
    }
}

Delete an Engine

You can delete an Engine by performing a DELETE request while specifying the target Engine鈥檚 ID in the request path. Deleting an Engine will cascade delete all MLInstances which reference that Engine, including any Experiments and Experiment runs belonging to those MLInstances.

API Format

DELETE /engines/{ENGINE_ID}
Parameter
Description
{ENGINE_ID}
The ID of an existing Engine.

Request

curl -X DELETE \
    https://platform.adobe.io/data/sensei/engines/22f4166f-85ba-4130-a995-a2b8e1edde32 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

Response

{
    "title": "Success",
    "status": 200,
    "detail": "Engine deletion was successful"
}
recommendation-more-help
cc79fe26-64da-411e-a6b9-5b650f53e4e9